Water Supply Facility Damage and Water Resource Operation at Disaster Base Hospitals in Miyagi Prefecture in the Wake of the Great East Japan Earthquake

Takashi Matsumura, MD;¹ Shizuka Osaki, RN;¹ Daisuke Kudo, MD, PhD;¹,² Hajime Furukawa, MD;¹ Atsuhiro Nakagawa, MD, PhD;¹,³ Yoshiko Abe, RN;¹ Satoshi Yamanouchi, MD, PhD;¹,² Shinichi Egawa, MD, PhD;⁴ Teiji Tominaga, MD, PhD;³ Shigeki Kushimoto, MD, PhD¹,²

1. Emergency Center, Tohoku University Hospital, Sendai, Japan
2. Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
3. Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
4. Division of International Cooperation for Disaster Medicine, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan

Correspondence: Daisuke Kudo, MD, PhD Division of Emergency and Critical Care Medicine Tohoku University Graduate School of Medicine 1-1, Seiryo-machi, Aoba-ku Sendai, Miyagi, 980-8574 Japan E-mail: kudodaisuke@med.tohoku.ac.jp

Conflicts of interest/funding: This work was supported by: Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research for Challenging Exploratory Research (Grant No. 24659794); the International Research Institute of Disaster Science of Tohoku University: special project research (joint research; research item A); and Pfizer Health Research Foundation Grant No. 22 (2013; international joint research). Manoa DNA (Representative Lloyd Kawakami), Mr. Takaya Yokokawa, and the Japanese Cultural and Community Center of Northern California (JCCNC) kindly supported for research and education activities relating to earthquake disasters.

Abstract

Introduction: The aim of this study was to shed light on damage to water supply facilities and the state of water resource operation at disaster base hospitals in Miyagi Prefecture (Japan) in the wake of the Great East Japan Earthquake (2011), in order to identify issues concerning the operational continuity of hospitals in the event of a disaster.

Methods: In addition to interview and written questionnaire surveys to 14 disaster base hospitals in Miyagi Prefecture, a number of key elements relating to the damage done to water supply facilities and the operation of water resources were identified from the chronological record of events following the Great East Japan Earthquake.

Results: Nine of the 14 hospitals experienced cuts to their water supplies, with a median value of three days (range = one to 20 days) for service recovery time. The hospitals that could utilize well water during the time that water supply was interrupted were able to obtain water in quantities similar to their normal volumes. Hospitals that could not use well water during the period of interruption, and hospitals whose water supply facilities were damaged, experienced significant disruption to dialysis, sterilization equipment, meal services, sanitation, and outpatient care services, though the extent of disruption varied considerably among hospitals. None of the hospitals had determined the amount of water used for different purposes during normal service or formulated a plan for allocation of limited water in the event of a disaster.

Conclusion: The present survey showed that it is possible to minimize the disruption and reduction of hospital functions in the event of a disaster by proper maintenance of water supply facilities and by ensuring alternative water resources, such as well water. It is also clear that it is desirable to conclude water supply agreements and formulate strategic water allocation plans in preparation for the possibility of a long-term interruption to water services.


Introduction

In the event of a large-scale disaster resulting in a large number of sick and wounded people at health care facilities, and in particular, at disaster base hospitals that are expected to play a key role in the most acute phase of a disaster event, it is vital that hospital

Abbreviation:

BCP: business continuity plan

Received: July 6, 2014
Revised: November 16, 2014
Accepted: November 21, 2014
functions, or business continuity, of the disaster base hospitals are maintained, even immediately following a disaster. In the case of the Great East Japan Earthquake of March 11, 2011, water supply systems, and other critical social infrastructure, were disrupted over a wide area around the disaster zone. In Miyagi Prefecture (Japan), up to 22,362 households had their water service interrupted, and a number of prefectural medical facilities were also adversely affected.

There have been several studies on disruptions and damage to water supply systems of hospitals in the event of disasters, but there have been very few studies that examine both facilities and operation. In this study, damage and disruption to water supply facilities and operation of water resources at Miyagi Prefectural disaster base hospitals at the time of the Great East Japan Earthquake were investigated, with the general aim of examining the issue of operational continuity of hospitals in the event of a disaster.

Methods
In this study, as part of a series of surveys of all secondary and tertiary medical institutions in Miyagi Prefecture (72 facilities) regarding accidental hypothermia at the time of the Great East Japan Earthquake (including: (1) a survey regarding the incidence of accidental hypothermia; (2) a survey regarding means of information and communication; and (3) a survey on heating in hospitals), with permission of the Medical Research Ethics Committee of the Faculty of Medicine of Tohoku University (Sendai, Japan), a written survey of the disaster medical centers located within the jurisdiction of the Miyagi Disaster Management Headquarters, and the 14 medical facilities, was conducted on the two items below. In Miyagi Prefecture, a total of 14 medical facilities are designated as disaster base hospitals.

First, an analysis of the event chronology at the 14 disaster base hospitals and the disaster medical centers located within the jurisdiction of the Miyagi Disaster Management Headquarters, and a written survey of the 14 disaster base hospitals, were conducted.

The survey questions concerned the disruption and restoration of water facilities at each hospital, as well as the supply and operation of water resources. On the disruption and restoration of water supply facilities, inquiries were made about the main configuration of water piping, pumps, elevated water tanks, and hospital plumbing that make up the water supply facility (Figure 1); on the supply and operation of water resources, inquiries were made about whether or not water supply services from water utilities were interrupted, how many days it took for water service to be restored (in case it was interrupted), and about the quantity of water used under normal conditions and during an earthquake disaster. Note that buildings not directly used for medical treatment, such as staff dormitories and research blocks, were excluded from the current investigation. Assessment of water quantities used for different purposes under normal conditions was also examined, and whether or not any plans were formulated to allocate available water strategically in the event of an emergency.

Second, a detailed interview survey on medical treatment work impacted by water supply disruptions was also conducted.

A survey of Tohoku University Hospital (Sendai, Japan) regarding water usage applications under normal conditions found that the greatest consumption of water—as far as can be determined—is for bathing (24%), followed, in order, by meal services, dialysis, and sterilization (which together account for approximately 13% of consumption). Consumption for applications other than meal services—that is, for different kinds of sanitation-related use, including lavatories and toilets—is difficult.

Figure 1. General Water Supply System of a Hospital.
A water-storage-tank-style water supply facility is composed of water supply piping, water storage tank, water pump, elevated water tank, and hospital plumbing.
In relation to the supply of water resources, water supply was interrupted to nine out of 14 hospitals following the disaster, with a minimum of one day and a maximum of 20 days.

Table 1. Damage to Water Supply Facility and Number of Days for Recovery

This table shows the number of points of damage for each part of the water supply facility as well as the range in values of the number of days needed to restore operation. There was a total of 14 points of damage at seven hospitals that suffered damage. Two points needed less than 10 days for water supply restoration, two points needed 10 to 30 days, and nine points needed 30 days or more.

<table>
<thead>
<tr>
<th>No. of Points of Damage (No. of Days)</th>
<th>On-site Water Piping</th>
<th>Water Storage Tank</th>
<th>Water Pump</th>
<th>Elevated Water Tank</th>
<th>Hospital Piping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (18-66)</td>
<td>2 (52-133)</td>
<td>1 (Unknown)</td>
<td>4 (31-90)</td>
<td>5 (1-133)</td>
<td></td>
<td>14 Points</td>
</tr>
</tbody>
</table>

Table 2. Damage to Water Supply Facility and Number of Days for Recovery

This table shows the number of points of damage for each part of the water supply facility as well as the range in values of the number of days needed to restore operation. There was a total of 14 points of damage at seven hospitals that suffered damage. Two points needed less than 10 days for water supply restoration, two points needed 10 to 30 days, and nine points needed 30 days or more.

<table>
<thead>
<tr>
<th>No. of Points of Damage (No. of Days)</th>
<th>On-site Water Piping</th>
<th>Water Storage Tank</th>
<th>Water Pump</th>
<th>Elevated Water Tank</th>
<th>Hospital Piping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (18-66)</td>
<td>2 (52-133)</td>
<td>1 (Unknown)</td>
<td>4 (31-90)</td>
<td>5 (1-133)</td>
<td></td>
<td>14 Points</td>
</tr>
</tbody>
</table>

Figure 2. Trend in Recovery from Water Supply Interruption.

Median value for number of days for recovery was three, with a minimum of one day and a maximum of 20 days.

to determine. In fact, including these applications, the specific use of a full 62% of water consumed cannot be determined.

Interview surveys of representatives at each hospital were also conducted on a total of five items—the four activities for which consumption was highest in the survey mentioned above (dialysis, sterilization, sanitation, and meal services), plus outpatient care, which is an essential requirement for a disaster base hospital. The impact on each activity of water supply interruption and water system damage was ranked using one of three levels: (A) 100% (operation as usual); (B) partial operation; and (C) 0% (no operation possible).

Results

Disruption and Restoration of Water Supply Facilities

Damage or disruption to water supply facilities was confirmed at 14 locations (seven hospitals). Table 1 shows the number of damage points and the number of days needed to restore service for different structures. For nine points of damage (four hospitals), 30 or more days were needed to restore service, with a maximum value of 133 days.

State of Water Resource Supply and Operation

In relation to the supply of water resources, water supply was interrupted to nine out of 14 hospitals following the disaster, with a median value of three days (range = one to 20 days) for service to be restored (Figure 2). For the nine hospitals that experienced water supply interruptions, the volume of water supplied per day under normal conditions was compared with the water volume supplied in the wake of the Great East Japan Earthquake (Figure 3). At hospitals where water supply was interrupted, the main water supply source was fed with an emergency supply of water, transported by truck; however, at Hospitals A, B, and C, where the available water supply service amounted to less than 10 m³ per day, due to insufficient emergency water supply, the only available water supply after the disaster was the water remaining in water storage tanks and elevated water tanks. Hospitals D, E, F, and G, which had well water supply facilities, were able to obtain water from their wells after the disaster, and apart from Hospital D, which did not make any detailed records, the volume of water supplied from the well was quite comparable to the volume supplied under normal operating conditions.

At the six hospitals that responded that their medical care activities were impacted, total available water was reduced. On the other hand, at the three hospitals that reported no impact to their medical care activities, Hospital I was able to restore water service on the day of the disaster, while Hospitals G and H managed to maintain approximately the same level of water as normal, by accessing well water and through frequent deliveries of emergency water.

The relationship between whether or not there was a water service interruption and whether there was any damage to water supply facilities, and the impact on medical care activities that require large amounts of water, was tabulated, as described above (Table 2). Of the facilities that responded that their medical care activity was impacted, all except Hospital E experienced damage to their water supply facilities. Dialysis was disrupted at three hospitals; meal services were disrupted at five hospitals; sterilization was disrupted at two hospitals; and outpatient care was disrupted at three hospitals. Two hospitals answered “C” (0% no operation possible) for one or more types of activity, and both of these experienced massive damage to water supply facilities within the hospital. At Hospital J, the elevated water tank on the roof of the building was destroyed, making water distribution difficult and causing a deterioration of sanitation conditions; at Hospital D, outpatient care and continuity of medical care within the hospital were difficult due to the damage to the hospital’s plumbing. For these reasons, both of these hospitals had to evacuate inpatients.

In terms of water resource operations, none of the hospitals had ascertained how much water they used for different purposes under normal conditions, and none had formulated a plan for strategic water allocation in the event of a disaster.

Discussion

In this study, the importance of not only ensuring a reliable water supply, including emergency water supply and well water, but also preventing the decline of hospital functionality by
Figure 3. Water Volume by Water Source During Normal Operation and Water Supply Interruption.
Left: water volume by water source in normal operation. Right: water volume by water source during water supply interruption.
At hospitals where medical care activities were impacted, total water volume was greatly reduced. At Hospital I, water service was recovered on the same day as the disaster. The water supply was greatly reduced, but there was hardly any change in the volume of well water. There was no data on well water for Hospital D.

Table 2. Impact on Medical Care Activities of Damage to Facility and Water Supply Interruption
Including: (A) no impact; (B) partial impact; and (C) no operation possible. If B or C was the answer for even one item, medical care had been impacted. Whether or not there was an impact is more closely correlated with facility damage than whether or not water supply was interrupted.
properly maintaining water supply facilities, was demonstrated. In addition, it took, on average, about three days for interrupted water supply services to be restored, whereas it took an average of 52 days to repair damaged water supply facilities. This suggests that the impact on medical care activities can be potentially very long lasting.

Since the Great East Japan Earthquake, the Ministry of Health, Labour, and Welfare has taken initiatives to enhance the earthquake-resistance of disaster base hospitals, and as of 2012, a full 73.0% of disaster base hospitals and critical care centers were earthquake-proof; however, this figure is still not high enough. Until water supply services can be restored fully, it is necessary to obtain emergency water supplies from external sources (e.g., deliveries by water trucks). In view of this, it is necessary to take precautionary countermeasures, such as: earthquake-proofing the whole series of structures, from the water storage tank used, to store supplied water, to the internal water piping of the hospital; setting up a water distribution system that does not include an elevated storage tank, which uses water pumps, and is not easily affected by an earthquake, by adopting a direct water supply system that utilizes a pressurized water supply pump; or installing multiple water piping circuits within the hospital. The current survey showed that well water is able to provide almost the same amount of water as during normal operation, proving that wells means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.

The results of this survey show that it is desirable to conclude water supply agreements and to formulate water allocation plans in anticipation of the possibility of water supply interruptions that last for a long time. The results of a study by Kudo et al that examined the requests for supply of materials from disaster base hospitals and it should be given a high priority as a disaster countermeasure. At the same time, this survey showed that regardless of whether well water supplies the same volume of water as the normal water supply service, the risk that the quality of groundwater is changed by an earthquake means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.

The results of this survey show that it is desirable to conclude water supply agreements and to formulate water allocation plans in anticipation of the possibility of water supply interruptions that last for a long time. The results of a study by Kudo et al that examined the requests for supply of materials from disaster base hospitals and it should be given a high priority as a disaster countermeasure. At the same time, this survey showed that regardless of whether well water supplies the same volume of water as the normal water supply service, the risk that the quality of groundwater is changed by an earthquake means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.

The results of this survey show that it is desirable to conclude water supply agreements and to formulate water allocation plans in anticipation of the possibility of water supply interruptions that last for a long time. The results of a study by Kudo et al that examined the requests for supply of materials from disaster base hospitals and it should be given a high priority as a disaster countermeasure. At the same time, this survey showed that regardless of whether well water supplies the same volume of water as the normal water supply service, the risk that the quality of groundwater is changed by an earthquake means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.

The results of this survey show that it is desirable to conclude water supply agreements and to formulate water allocation plans in anticipation of the possibility of water supply interruptions that last for a long time. The results of a study by Kudo et al that examined the requests for supply of materials from disaster base hospitals and it should be given a high priority as a disaster countermeasure. At the same time, this survey showed that regardless of whether well water supplies the same volume of water as the normal water supply service, the risk that the quality of groundwater is changed by an earthquake means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.

The results of this survey show that it is desirable to conclude water supply agreements and to formulate water allocation plans in anticipation of the possibility of water supply interruptions that last for a long time. The results of a study by Kudo et al that examined the requests for supply of materials from disaster base hospitals and it should be given a high priority as a disaster countermeasure. At the same time, this survey showed that regardless of whether well water supplies the same volume of water as the normal water supply service, the risk that the quality of groundwater is changed by an earthquake means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.

The results of this survey show that it is desirable to conclude water supply agreements and to formulate water allocation plans in anticipation of the possibility of water supply interruptions that last for a long time. The results of a study by Kudo et al that examined the requests for supply of materials from disaster base hospitals and it should be given a high priority as a disaster countermeasure. At the same time, this survey showed that regardless of whether well water supplies the same volume of water as the normal water supply service, the risk that the quality of groundwater is changed by an earthquake means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.

The results of this survey show that it is desirable to conclude water supply agreements and to formulate water allocation plans in anticipation of the possibility of water supply interruptions that last for a long time. The results of a study by Kudo et al that examined the requests for supply of materials from disaster base hospitals and it should be given a high priority as a disaster countermeasure. At the same time, this survey showed that regardless of whether well water supplies the same volume of water as the normal water supply service, the risk that the quality of groundwater is changed by an earthquake means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.

The results of this survey show that it is desirable to conclude water supply agreements and to formulate water allocation plans in anticipation of the possibility of water supply interruptions that last for a long time. The results of a study by Kudo et al that examined the requests for supply of materials from disaster base hospitals and it should be given a high priority as a disaster countermeasure. At the same time, this survey showed that regardless of whether well water supplies the same volume of water as the normal water supply service, the risk that the quality of groundwater is changed by an earthquake means that some hospitals may not be able to use well water until the water quality has been checked. Therefore, instead of just diversifying water supply options, it is also important to properly maintain water supply facilities and devise effective countermeasures to the risks posed by disasters.
risk of long-term water service disruption, it is desirable to conclude
water supply agreements and to formulate water allocation plans.

Acknowledgements
The chronology of events was collected from Miyagi Prefecture’s
Department of Medical Development, and the 14 disaster base
hospitals in Miyagi (Sendai Medical Center, Katta General
Hospital, South Miyagi Medical Center, Sendai City Hospital,
Tohoku University Hospital, Sendai Red Cross Hospital,
Tohoku Rosai Hospital, Tohoku Pharmaceutical University
Hospital, Saka General Hospital, Osaki Citizen Hospital,
Kurihara Central Hospital, Tome Citizen Hospital, Ishinomaki
Red Cross Hospital, and Kesen-numa City Hospital.) Valuable
comments were given by Masayuki Kobayashi, head of the
Facility Planning Office, as well as Yayoi Okano and other
neurosurgery research administrators.

References
1. Schultz CH, Koenig KL, Lewis RJ. Implication of hospital evacuation after
2. Ukai T. The great Hanshin-Awaji Earthquake and the problems with emergency
disaster base hospitals in the Great East Japan Earthquake: survey of Miyagi
Prefecture disaster base hospitals and the Prefectural Disaster Medicine Head-
shisetu higai nado genchi chosadan houkokusho. [Report of water facility damage
after the Great East Japan Earthquake (authors' translation), in Japanese]. http://
2011;787:529-542.
6. Saigai kyoten byoin, sonae busoku/kino mahi shi, tenin yogi naku. [Lack of sufficient
preparation at the disaster base hospital (authors' translation), in Japanese]. Kahoku Shipo
8. Takei E, Iketschi J, Tokuno S, Yamada N, Ukai T. Survey of water supply in
kekka. [Survey Result of Seismic Planning in Japanese Hospital(authors' translation),
May 29, 2013.
kentokai houkokusho. [Report of committee on disaster measures (authors' translation),
October 31, 2011.
kansuru jittai chosa houkokusho. [Survey result of business continuity plans in public
and specific institutions (authors' translation), in Japanese]. http://www.mhlw.go.jp/
continuity planning at disaster base hospitals: analysis of the experience of 14 disaster
base hospitals in Miyagi Prefecture after the Great East Japan Earthquake, in
learned at Tohoku University Hospital during the first 72 hours. IEEE. PULSE.